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Abstract. The spatial distribution of unvisited/persistent sites in 1DA+A→∅ model is studied
numerically. Over length scales smaller than a cut-offξ(t) ∼ tz, the set of unvisited sites is found
to be a fractal. The fractal dimensiondf , dynamical exponentz and persistence exponentθ are
related throughz(1− df ) = θ . The observed values ofdf andz are found to be sensitive to the
initial density of particles. We argue that this may be due to the existence of two competing length
scales, and discuss the possibility of a crossover at late times.

Persistence properties of spatially extended systems undergoing time evolution has attracted
a lot of attention of late. Generically there is a stochastic fieldφ(x, t) at each lattice sitex,
which evolves with timet through interactions with other (usually nearest-neighbour) sites.
One quantity of interest in the present context is the persistence probability at timet , which is
defined as the fractionP(t) of sites in which the stochastic fieldφ(x, t) did not change sign
in the time interval [0, t ]. In a large number of cases, it is found thatP(t) ∼ t−θ†. The new
exponentθ , called the persistence exponent, is, in general, unrelated to other known static and
dynamic exponents.

The non-trivial nature ofθ can be attributed to the interactions between neighbouring
sites, which makes the effective stochastic process at any single site non-Markovian. Suppose
φ(x, t) flips sign at timet . This event will increase the chance of neighbouring sites also
flipping sign at subsequent timest ′ > t . This leads to the growth of spatial correlations in the
system, which die out with increasing separation, on account of the statistical independence
of distant flips. The non-Markovian nature of the process is more directly captured in these
spatial correlations. Although much effort has been expended for calculation of the persistence
exponentθ by exact [2] and approximate [3] methods, little has been done to investigate the
associated spatial correlations in the process. In this letter, we undertake such a study ind = 1,
where the correlations are expected to be most pronounced.

In one dimension, the zeros of the stochastic field can be viewed as a set of particles,
moving about in the lattice, annihilating each other when two of them meet. When a particle
moves across a lattice site for the first time, the field there flips sign, and the site becomes
non-persistent. If each particle is assumed to perform purely diffusive motion, this reduces to
the well known reaction–diffusion modelA +A→ ∅ [4], with appropriate initial conditions.
The simplest case is random initial distribution of particles, with average densityn0, for which
P(t) ∼ t−θ with θ = 3

8 [2], independent ofn0 [5]. We investigate spatial correlations in
persistence for this simple model. We start with the two-point correlatorC(r, t), which is
defined as the probability that sitex + r is persistent, given that sitex is persistent (averaged
overx). We defineρ(x, t) as the density of persistent sites: i.e.,ρ(x, t) = 1 if site x is

† For a recent review see [1].

0305-4470/00/120109+06$30.00 © 2000 IOP Publishing Ltd L109



L110 Letter to the Editor

persistent at timet , and 0 otherwise. Then, with the previous definition, the expression for
C(r, t) is as follows:

C(r, t) = 〈ρ(x, t)〉−1〈ρ(x, t)ρ(x + r, t)〉 (1)

where the brackets denote the average over the entire lattice and〈ρ(x, t)〉 = P(t).
Our main results are the following. Strong spatial correlations exist in the distribution of

persistent sites, with a cut-off length scaleξ(t) separating correlated and uncorrelated regions.
At late timest (i.e., in thescaling regime), this length scale grows as a power of time:ξ(t) ∼ tz,
wherez is the dynamical exponent in this context†. In the correlated regionr � ξ(t),
the correlator shows apower-law decay with distance: C(r, t) ∼ r−α. The scale-invariant
behaviour, indicative of strong correlations, shows that the set of persistent sites is a self-similar
fractal with dimensiondf = 1− α. By consistency, the exponents are related aszα = θ . We
have also analysed the fractal structure by a box-counting method. Careful measurements of
the exponents over several decades of Monte Carlo (MC) time show that the observed values
of α andz change with initial densityn0 while satisfying the above scaling relation.

We did our numerical simulation on a one-dimensional lattice of sizeN = 105, with
periodic boundary conditions. Particles are initially distributed at random on the lattice with
average densityn0, and their positions are sequentially updated—each particle was made to
move one step in either direction with equal probability (D = 1

2). Whenever such a move
resulted in two particles occupying the same position, both are removed from the lattice before
moving to the next particle. The starting density of persistent sites isP(0) = 1− n0, and a
persistent site becomes non-persistent when it is occupied by a particle for the first time. The
time evolution is performed up to 105 MC steps (1 MC step is counted after all the particles
in the lattice were touched once). These time and lattice scales are the largest possible within
our computational resources. We repeated our simulations for a few values of starting density
n0. The results were averaged over 50 different initial realizations.

For distancesr � 1 and late timest , we find thatC(r, t) ∼ r−α for r � ξ(t). In
the other extreme of large separations, i.e.,r � ξ(t), the sites are uncorrelated so that
C(r, t) = P(t) ∼ t−θ , independent ofr. Thusξ(t) is the correlation length for persistence,
and consistency demandsξ(t)−α ∼ t−θ . This implies a power-law divergence:ξ(t) ∼ tz with
a dynamical exponentz related toα andθ through the scaling relation

zα = θ. (2)

The observed behaviour ofC(r, t) can be summarized in the following dynamic scaling
form:

C(r, t) = P(t)f (r/ξ(t)) (3)

with the scaling functionf (x) ∼ x−α asx � 1 andf (x) ' 1 for x � 1. In figure 1, the
scaling functionf (x) = C(r, t)/P (t) is plotted against the scaled distancex = r/tz for two
time values separated by a decade. The initial density isn0 = 0.5. Excellent data collapse
is obtained forz = 1

2, and the measured value of the spatial exponentα ' 3
4 is entirely in

accordance with the scaling relation.
The observed power-law decay ofC(r, t) with r has a wider significance, apart from

showing the strong spatial correlations in the distribution. It implies that, over length scales
not too large, the underlying structure is a self-similar fractal. This is most easily seen with
the ‘box-counting’ procedure [6]. We divide the entire lattice into boxes of sizel, at timet .
After discarding ‘empty’ boxes, i.e., those which do not even contain a single persistent site,
let M(l, t) be the average number of persistent sites in a box of lengthl. This quantity is

† We have chosen a different convention for definingz from that generally found in the literature.



Letter to the Editor L111

Figure 1. The scaling function for two-point correlationf (x) = C(r, t)/P (t) plotted against the
scaling variablex = r/tz on a log-scale for two values of timet = 103 and 104. The starting
density of particles isn0 = 0.5. The data for different times are seen to collapse into the same
curve if scaling is done withz = 0.50. The observedα ' 0.75 is in agreement with the proposed
scaling relation (2).

related toC(r, t) throughM(l, t) = ∫ l0 C(r, t)dr. Substituting the scaling form equation (3)
for C(r, t), one finds

M(l, t) ∼ l1−α l � ξ(t) (4)

M(l, t) = lP (t) l � ξ(t) (5)

which can be summarized in the scaling form

M(l, t) = lP (t)h(l/ξ(t)) (6)

with the scaling functionh(x) ∼ x−α for x � 1 andh(x) ' 1 for x � 1. We see that
over small enough length scalesl � ξ(t), the set of persistent sites form a self-similar fractal
with fractal dimensiondf = 1 − α, with a crossover to homogeneous behaviour at larger
length scales. This crossover is illustrated in figure 2, where we haveM(l, t) (measured from
box-counting) plotted against the box sizel for three values of time. The initial density here
is n0 = 0.5, and we finddf ' 0.25 in agreement with our result from study of the two-point
correlationC(r, t).

In figure 3, we compare the results from box-counting for different starting densities. For
n0 = 0.2, we see that the fractal region appears much later compared with higher values. This
is presumably due to the large inter-particle separation att = 0, and the consequent delay in
reaching the scaling regime. For higher densities, the fractal dimension is seen to decrease
continously withn0, approaching zero in the limitn0→ 1. We notice that althoughξ(t) ∼ 103

in terms of the lattice spacing, it is still much less than the lattice sizeN , so as to rule out
finite-size effects.

In figure 4, we plot the scaling functionh(η) = M(l, t)/ lP (t) against the scaling variable
η = l/tz for two values of time separated by a decade. We have displayed results forn0 = 0.8
and 0.95. Forn0 = 0.8 the best data collapse is obtained withz ' 0.45, whereas for
n0 = 0.95, the corresponding value isz ' 0.39. The exponentα, measured from the small
argument divergence ofh(η), also shows similar changes.



L112 Letter to the Editor

Figure 2. The average number of persistent sitesM(l, t) in a box of sizel at time t is plotted
against the box sizel for t = 103, 104 and 105. The initial density of particles isn0 = 0.5. The
crossover from the fractal (dimensiondf ' 1

4) to homogeneous (df = d = 1) distribution is clear
from the figure.

Figure 3. Same as figure 2, for four starting densitiesn0 = 0.2, 0.5, 0.8 and 0.95. All plots
correspond tot = 104. Forn0 = 0.2, the fractal region is reached late, but the asymptotic value
is seen to be the same as that forn0 = 0.5. For highern0, df decreases continously, approaching
zero in the limitn0→ 1.

In table 1, we have summarized our exponent values for three initial densities. All
measurements were made using the data for the mass-distributionM(l, t) rather than the
correlatorC(r, t) on account of lesser statistical fluctuations. For the dynamical exponentz,
we chose the value which gave the best collapse of data under dynamic scaling. Although it is
difficult to measure the exponent very accurately using this method, we have verified by visual
inspection that the error involved is less than the reported changes in the exponent values at
least by a factor of two. We have omitted the casen0 = 0.2 because no single value ofz was
found to give good scaling behaviour in the time range studied.

A more direct way to measure the dynamical exponentz is to compute the average
separationL(t) between persistent sites. If the spatial distribution were uniform over all
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Figure 4. The scaling function for the mass-distributionh(η) = M(l, t)/ lP (t) plotted against the
scaling variableη = r/tz for two values of timet = 104, 105 and two starting densitiesn0 = 0.8
and 0.95. The observed data collapse has been obtained withz = 0.45 (n0 = 0.8) andz = 0.39
(n0 = 0.95). The corresponding values forα are'0.83 and 0.95. For comparison, a straight line
with slope 0.75 is also shown.

Table 1. Observed values of exponentα as measured from box-counting method (details in text),
for three values of initial densityn0. The quoted value of dynamical exponentz is the one which
gave the best data collapse over three decades of time,t = 103, 104 and 105. The fractal dimension
df = 1− α.

n0 α z

0.50 0.7342(8) 0.50
0.80 0.8294(5) 0.45
0.95 0.9517(3) 0.39

length scales, this quantity would be simplyL(t) ∼ P(t)−1. Since this is not the case, we
have to proceed more carefully. We definen(k, t) to be the number of nearest-neighbour
pairs of persistent sites at timet with separationk. By definition,

∫
k
n(k, t) = NP(t) and∫

k
kn(k, t) = N . The average separationL(t) = N−1

∫
k
k2n(k, t) and we expectL(t) ∼ tz.

We computedL(t) numerically by simulating 100 lattices of sizeN = 105 up to 105 time steps,
for eachn0. In figure 5, we display the results for the running exponentzeff = d(logL)/d(log t).
The results are seen to be fully supportive of our earlier conclusions.

Our numerical results are strongly suggestive of non-universal behaviour of exponents
α and z. The non-universal exponent values have been observed to be valid over at least
three decades of MC time (up to 105 time steps). We note that there aretwo length scalesat
work here. For lown0, the dynamics is dominated by diffusive motion of isolated particles,
‘eating into’ clusters of persistent sites. Due to annihilation, their average density decays as
n(t) = (8πDt)−1/2 [7] and hence the average separation is the diffusive scaleLD(t) ∼ t1/2.
On the other hand, forn0 → 1, the initial separation of persistent sites∼1/(1− n0) � 1.
The short-time behaviour is now dominated by persistent→ non-persistent conversion of
isolated sites, with characteristic length scaleLp(t) ∼ t3/8. It is possible that the observed
non-universal behaviour results from competition between these two scales. According to this
picture, one should see a crossover to the diffusion dominated regime at later times, but we are
yet to see any signature of that. Further numerical work, at least a few orders of magnitude
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Figure 5. The running exponentszeff for four starting densities is plotted against 1/ log t . These
results have been averaged over 100 starting configurations.

greater than what is reported here, would be required to establish conclusively the possibility
of a temporal crossover.

To conclude, we have discovered strong power-law correlations in the spatial distribution
of persistent sites in the one-dimensionalA + A → ∅ model. The correlation lengthξ(t)
exhibits an algebraic divergence with time. In the correlated region, the set of persistent sites
form a self-similar fractal, while over larger length scales, the distribution is homogeneous.
These features are not specific to this model or dimension. We have observed identical features
in kinetic Ising model ind = 1 and 2 [8], showing that this is a general phenomenon in the
context of persistence. The interesting aspect of the present model is that the fractal dimension
was found to be sensitive to the starting density of particles.

We thank M Muthukumar for useful discussions and G I Menon for a critical reading of the
manuscript and valuable suggestions.
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